Connect with us

Viral Tech News

Viral Tech News

NASA’s Hunt for Lunar Water Intensifies


Robotics

NASA’s Hunt for Lunar Water Intensifies

NASA’s Artemis program has been called ambitious for its goal of returning humans to Earth’s moon as early as 2024. But its most audacious aspiration is something else entirely: a plan to usher in an era of sustainable lunar operations by mining the moon’s reserves of water ice. Once tapped, this extraterrestrial reservoir could become…

NASA’s Hunt for Lunar Water Intensifies
Artist’s concept of the VIPER mobile robot, which is set to roam the moon’s south pole in search of water ice. Credit: NASA Ames Research Center and Daniel Rutter

On a Roll

In some ways, NASA is already on a roll when it comes to prowling the moon in search of water ice. On June 11 the agency announced that it awarded a contract valued at $199.5 million to the Pittsburgh-based aerospace company Astrobotic Technology for the deployment of the yet another mission:  the Volatiles Investigating Polar Exploration Rover (VIPER)—using the company’s Griffin lander.

The deal is part of the space agency’s Commercial Lunar Payload Services program, in which NASA contracts with private companies to plop gear onto the lunar landscape. The agency provides only the payloads and cash for services rendered.

The plan calls for the golf-cart-sized VIPER to roll off of Astrobotic’s lander at a still-undetermined locale in the vicinity of the moon’s south pole in 2023. During its 100-Earth-day mission, the rover will traverse several kilometers and use science instruments to examine various lunar environments in search of water ice. The rover will also have a drill to poke as far as a meter down into the moon’s surface.

The exact price tag of VIPER itself remains to be determined, according to Lori Glaze, director of NASA’s planetary science division. But the mission is moving forward. As for the water-ice quest, “we have a lot of big questions —not knowing what it is, where it is, what else is there with it,” she said in a recent media briefing.

Real Life. Real News. Real Voices

Help us tell more of the stories that matter

Become a founding member

Proving the Reserves

Although their overlapping objectives may seem to make some of these missions redundant, in truth, there is so much work to be done preparing for a lunar water-ice gold rush that even more spacecraft could be required.

So far all the signals and measurements gathered from remote-sensing probes constitute only a preliminary indication of the existence of water on the moon, says Angel Abbud-Madrid, director of the Center for Space Resources at the Colorado School of Mines. “Borrowing terminology from the mining industry, we only know the water on the moon as an ‘inferred resource’ and not as a ‘proven reserve,’” he says. The latter “is required to establish an economically attractive extraction operation for commercial purposes or to assure space agencies that crews can depend on this water for their survival.”

Reaching that vaunted level, Abbud-Madrid foresees, will require a far more comprehensive and orchestrated lunar-prospecting campaign: a fleet of spacecraft that would include a multitude of low-cost impactors and drilling and trenching samplers, as well as swarms of robotic rovers. Without that sort of robust effort, the data on lunar water ice deposits will remain “much too sparse, coarse and uncertain to do more than broad-brush planning,” says Leslie Gertsch, a geological and mining engineer at Missouri University of Science and Technology.

The VIPER mission, in particular, she says, could be the first part of a multistage effort to pinpoint and characterize water-ice deposits in detail on the ground, as well as from orbit. From there, subsequent investigations could gather more and finer information about the physical form and purity of the actual ice deposits, which will likely be intermixed with some amount of lunar soil. Eventually, all that hard-won knowledge could allow more sophisticated and lucrative activities—from planning excavations to setting up processing plants and scheduling production runs.

Without such a vast data set, meaningful progress on crafting possible approaches to mining and processing deposits may prove elusive. “Innovative methods being devised now could turn out to be either misguided dead ends or brilliant leaps forward,” Gertsch says. “Histories of mining districts on Earth are filled with examples of both. We can learn from the past.”

One of the lessons that should be learned, according to Kevin Cannon, a postdoctoral researcher at the University of Central Florida, is not to make every mission strictly about science. Many of the unknowns most relevant for developing lunar ice as a resource, such as which deposits would be most accessible and economical to mine, are of minimal scientific interest.

“My view is that these new orbiters, like LunaH-Map and Lunar Trailblazer, are going to mostly provide incremental improvements in what we already know,” Cannon says. To answer the most important questions about the amount and quality of ice, he adds, on-the-spot sleuthing by robotic probes—and eventually humans—will likely be necessary.

“I think the VIPER rover is a great start, although it’s geared toward science,” Cannon says. “We’ll need dedicated, resource-focused missions to really get a sense of the economic potential.”

Illustration of Artemis astronauts at work on the moon. Credit: NASA

A New Lunar Pact

What seems certain is that as the world gains a better understanding of the moon’s potential economic value, new regulations dictating activities there will likely become necessary. Consequently, in May NASA unveiled a summary of what the space agency calls the Artemis Accords. “We needed something new. A new legal framework to support Artemis activities,” says Mike Gold, NASA’s acting associate administrator for international and interagency relations and a key leader in shaping the accords.

One of their key principles is tied to future use of resources on the moon. Specifically, the accords’ summary document states, “The ability to extract and utilize resources on the Moon, Mars, and asteroids will be critical to support safe and sustainable space exploration and development.”

But that declaration depends on what the moon truly has to offer. “We don’t even know what the unknown unknowns are, relative to the moon,” Gold says. “We have really just begun to scratch the surface of our knowledge of what the physics, what the geology and what the opportunities of the moon will be.”

That uncertainty is why the principles in the Artemis Accords need to be relatively general, Gold says. “For now, we need to proceed cautiously in a generic fashion. We’re going to learn things, and I expect surprises,” he adds. “I’m sure there will be an extraordinary revelation that we’re going to encounter as we explore the moon. Our knowledge of the moon and the surprises that she has in store for us are not to be underestimated.”

ABOUT THE AUTHOR(S)

Leonard David

    Leonard David is author of Moon Rush: The New Space Race (National Geographic, 2019) and Mars: Our Future on the Red Planet (Nati

    Subscribe to the newsletter news

    We hate SPAM and promise to keep your email address safe

    Click to comment

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Top Stories

    To Top